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Abstract. We show that a unique, most probable and stable solution for the wavefunction of the universe,

with a very small cosmological constant Λ1 �
(
π
lpN

)2
, can be predicted from the supersymmetric minisuper-

space withN vacua of the landscape of string theory without referring to the anthropic principle. Due to the
nearest neighbor tunneling in moduli space lattice, theN-fold degeneracy of the vacua is lifted and a discrete
spectrum of bound state levels over the whole minisuperspace emerges. Supersymmetry is spontaneously

broken by these bound states, with discrete non-zero energy levels Λs �
(
sπ
lpN

)2
, s= 1, 2, . . .

PACS. 98.80.Qc; 11.25.Wx

Recent progress in string theory has revealed a large and
rich structure of vacuum solutions in moduli space [1–
11], known as the landscape [3]. The large number of
vacua results from the fact that in a typical compactif-
ication of M-theory from eleven dimensions to (3+1) di-
mensions there are hundreds of ways of ‘wrapping’ com-
pact dimensions with flux and hundreds of 4-form fields
and fluxes. Counting of string theory vacua has been the
subject of much recent works on landscape theory [8–11].
The (Poincaré) supersymmetric (SUSY) vacua are degen-
erate with zero vacuum energy, while the non-SUSY part
of the landscape is expected to have vacua with different
but finite values of the energy density λ in the range 0–M4p .
In general one expects to have disconnected sectors of such
vacua as well.
The potential V (φ) of the moduli field φ (which de-

scribes the collective contributions from all moduli φi), is
typically described as having many valleys (the vacuum
solutions) separated by barriers with height of order M4p .
Though the detailed structure of the landscape is not yet
fully understood, the large number of vacuum solutions
will quite likely persist. As a result the following question
has been the central theme in the landscape investiga-
tion: In which vacuum, from this multitude of choices, does
our universe reside? There seems to be no physical selec-
tion criterion to answer this challenge, a fact that has led
many people to seek support from anthropic arguments
instead [3].
Our approach here is entirely different from the way

this challenge has been explored so far. We do not ask ‘in
which vacuum do we live?’. Instead we are interested in
finding the answer to the following question: Which sta-
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ble solution of the wavefunction of the universe is the most
probable solution over the whole superspace of the land-
scape? As we show below, the wavefunction of the uni-
verse actually spreads over the whole landscape rather
than being localized around a certain particular vacuum.
We model the landscape by considering the superspace of
moduli φ as a finite lattice of N sites with tunneling be-
tween the sites taken into account in the nearest neighbor
approximation. We show that there is a discrete range of
solutions that form ‘energy’ bands, and the most proba-
ble one is the minimum energy bound state which is lifted
from zero. Thus, our treatment predicts a universe having
a small cosmological constant, Λ�

(
π
lpN

)2
(provided N is

large), as the most probable one, without referring to the
anthropic arguments.

1 The minisuperspace approach

In the superspace of all vacuum solutions for moduli φ with
homogeneous 3-geometries, we consider only one sector,
namely, the minisuperspace of SUSY vacua, that preserve
R-parity symmetry, described by the potential V (φ) with
potential wells that sit at zero, and by the metric of spa-
tially flat and homogeneous 3-geometries

ds2 = [−N dt2+a2(t)dx2] , (1)

N is a lapse function that can be set to N = 1. We also
make the assumption of equal a priori probabilities for each
SUSY vacuum to occur. This means that we consider the
potential V (φ) for the modulus field to have a periodic ‘lat-
tice’ type distribution of equidistant potential wells and
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barriers. The energy of the SUSY vacua will sit at λi = 0,
and for the barrier heights and spacing b between them we
can take the typical values of O(M4p ) and Planck length
b � lp respectively. Let the number of (vacuum) sites in
this SUSY minisuperspace ‘periodic lattice’ be some large
but finite number N . The SUSY minisuperspace is de-
fined by the configuration space of the two variables φ and
a. The wavefunction of the universe propagating through
the SUSY minisuperspace, Ψ(a, φ), is a functional over the
configurations φ and a, as we switch on gravity. All our cal-
culations and results below can easily be extended to closed
and open universes.

2 Formalism

We set out to solve the Wheeler–De Witt equation in the
minisuperspace. The combined action of the a, φ back-
ground is

S = Sg+Sφ =

∫
d4x
√
−g

[
R

κ2
+
φ̇2

2
−
1

2
V (φ)

]
. (2)

We set below the normalization factor κ2 = 12 and the
Planck constant h̄ equal to one, unless otherwise noted.
The Lagrangian for gravity is

Lg =
1

2
N

[
−
aȧ2

N 2
−a3Λ

]
. (3)

The canonical momenta are defined by pa =
∂Lg
∂ȧ
=−aȧN .

The corresponding Hamiltonian becomes

Hg = (paȧ−Lg)/N =−
1

2a

[
p2a−a

4Λ
]
. (4)

The homogeneous moduli field is described by the
Lagrangian

Lφ =
a3N

2

(
φ̇2

N
−V (φ)

)
, (5)

and its canonical momenta are given by pφ =
∂Lφ

∂φ̇
= a3φ̇.

The potential for the moduli φ in the SUSY minisuper-
space is some periodic function with zero energy for all N
potential wells and lattice spacing b as explained above,
which satisfies

V (φ) = V (φ+ b) , (6)

with barrier heights � O(M4p). The Hamiltonian for the
field, with N set to one, is

Hφ =
a3

2

(
φ̇2+V (φ)

)
. (7)

Let us define ln(a) = α, ȧ
a
= α̇. The full Hamiltonian in the

(α, φ) minisuperspace on the SUSY sector of the super-
space with Λ= λi = 0 becomes

H=
1

2e3α
[
−p2α+p

2
φ+e

6αV (φ)
]
. (8)

The system is quantized by promoting the conjugate mo-
menta in (8) to the operators p̂α =−i

∂
∂α and p̂φ =−i

∂
∂φ
1

We have

Ĥ=
1

2e3α

[
∂2

∂α2
−
∂2

∂φ2
+e6αV (φ)

]
. (9)

The Wheeler–DeWitt equation is the quantum Hamilto-
nian constraint, obtained by varying the action (2) with
respect to N ,

ĤΨ(a, φ) = 0 , (10)

with the Hamiltonian operatorH given by (9) acting on the
wavefunction of the universe Ψ(α, φ).
The field equations of motion are obtained by varying

the action, S in (2), with respect to α and φ, respectively,
and read

φ̈+3Hφ̇+
1

2

∂V

∂φ
= 0 , (11)

α̈+
3

2
[α̇2+ φ̇2−V (φ)] = 0 . (12)

It is easy to check for consistency that in fact the α equa-
tion of motion is nothing more than the Friedmann equa-
tion for the expansion in the presence of the energy density

of the field φ, ε= φ̇
2

2 +
1
2V (φ).

3 Boundary conditions and solution

The SUSY minisuperspace periodic lattice contains a large
but finite number of ‘lattice sites’ (vacua),N , in the poten-
tial V (φ), (6). We will assume that there is no interaction
with the ‘hidden sectors’ of the superspace, and thus the
wavefunction does not leak out to other sectors. The solu-
tion to the Wheeler–DeWitt equation (10) would produce
an N -fold degenerate ground state for Ψ(α, φ). Let us now
allow for tunneling between sites, in the nearest neighbhor
approximation, with a tunneling rate δ. Finite large peri-
odic lattices have been extensively studied in condensed
matter physics [21]. Tunneling between neighbor sites lifts
the degeneracy of the vacuum solution as it breaks the
lattice translation symmetry. In order to establish the anal-
ogy with condensed matter systems, let us for the moment
take α= constant in (9). For our SUSY ‘lattice’ the ground
state vacuum energy is Λ= 0. The boundary conditions in
this large but finite lattice quantize the wavenumber k in
terms of a discrete quantum number s. There are two pos-
sible boundary conditions we can choose for the N lattice
sites numbered 0 to N −1: The fixed end-point boundary
that requires the wavefunction does not propagate out-
side the minisuperspace, i.e. the function should vanish at
these end-points; or the cyclic boundary condition relevant

1 There is the operator ordering ambiguity which can be ig-
nored in the semiclassical approximation we are interested in
here. For more details and subtleties of the minisuperspace ap-
proach to the second quantization of gravity see, e.g. [12–18].
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for large N which requires that the sth site should satisfy
ΨN+s = Ψs. For largeN the two are equivalent by the sym-
metry of k→−k, |k| ≤ π

L and L = bN . There are N − 1
normal modes in this configuration. Boundary conditions
thus require that

ks =
πs

bN
, s= 1, 2, . . . , N . (13)

Due to the mixing between nearest neighbors from tun-
neling, the Hamiltonian has non-diagonal terms. Diagonal-
izing the Hamiltonian yields the energy eigenvalues of (15),
thereby splitting the levels and removing the N -fold de-
generacy of the ground state. The eigenfunctions obtained
after the diagonalization of the Hamiltonian are the nor-
mal modes of the system given by Ψk(s)(φ) � sin(ksφ) or
cos(ksφ). Physically these eigenfunctions are a superpo-
sition of left and right moving Bloch plane waves which,
due to constructive interference in their phases, satisfy the
Bragg reflection condition and form standing waves in the
minisuperspace lattice of size L= bN . These bound states
are extended states on the landscape as they can spread
over many vacua due to tunneling. The expressions for the
standing waves consistent with the boundary condition are

Ψs �
sin(ksφ)√
ks

, (14)

where the quantum number s (not to be confused with
the lattice site numbering), takes values in the range s=
1, . . . , N . The eigenvalues of the Hamiltonian form bands
of energy with discrete energy levels, εs. A rough estimate

for the tunneling rate can be given by δ �
(
π
b

)2
, known as

the mass gap of periodic lattices. The energy of each level
with wavenumber ks is

εs = 2δ−2δ cos(ksb) . (15)

At this point we re-establish the dependence on α and
find solutions for the wavefunction of the universe Ψ(α, φ)
to the full Hamiltonian given by (9). Let us take the follow-
ing ansatz for the wavefunction of the universe Ψ in (10):

Ψ(α, x) =ΣsFks(α)ψks (x) . (16)

We have rescaled the variable and the parameters as fol-
lows: φ to x = e3αφ, b̃ = be3α, k̃s = kse

−3α, δ̃ = δe6α so
that (10) becomes separable in α, x. After rescaling,ψks(x)
in (16) satisfies the α independent equation

[
−
∂2

∂x2
+V (x)

]
ψks(x) = εksψk(x) . (17)

The energy eigenvalues εs �
h̄2k2s
2 (as in (15)) and the solu-

tions for the eigenfunctions ψks are given by (13) and (14).
The lowest energy standing wave is the one for s =

1, k̃1 =
π

b̃N
, ε1 =

(
π

b̃N

)2
. By plugging (17) back into (10)

we obtain that the Fks(α) of (16) satisfy the following
equation:

[
∂2

∂α2
+e6αεs

]
Fks(α) = 0 . (18)

The solution to this equation is a zero order Bessel
function,

Fks(α) = J0

(
1

3

√
εse
6α

)

=
1

2

(
H
(1)
0

(
1

3

√
εse
6α

)
+H

(2)
0

(
1

3

√
εse
6α

))
,

(19)

namely the Hankel function H
(2)
0 with the chosen bound-

ary conditions. In the large a= eα limit it reads

Fs(α) ≈
1

(|ε̃s|)1/4
e±i
√
|ε̃s|a

3
, (20)

where ε̃s = e
6αεs =

(
sπ
bN

)2
with s= 1, 2, . . . , N .

The solution to the equation of motion for α, (12),
yields α = ±|εs|1/2t = ±(Hst). The growing mode soon
dominates over the decaying one, thus we take only the
outgoing mode α = +Hst as our boundary condition at
time plus infinity (see [14] for details). Therefore, each
standing wave mode labelled by the quantum number s in
the expression (16) for the wavefunction Ψ(α, φ) describes
a de Sitter universe with its own constant non-zero cosmo-
logical constant ε̃s �

(
πs
bN

)2
, time and expansion rate α =

+Hst. There are N −1 discrete normal modes that form
the discrete energy band of bound states, all lifted from
zero by the respective level energy εs. Clearly this mass gap
of levels spontaneously breaks the SUSY of the background
landscape. Decoherence between levels is resolved since the
energy levels are discrete and separated by a finite amount
of energy. The lowest lying energy state, corresponding to
s= 1, has a non-zero energy of ε̃1 =

(
π
bN

)2
.

There is an ongoing debate in quantum cosmology [14]
on the measure of probability in the wavefunction of
the universe, both definitions being plagued with some
pathologies. The probability for (9), viewed as a Klein–
Gordon equation, is given by P = i(Ψ∂aΨ∗−Ψ∗∂aΨ). The
same Hamiltonian, when treated with the quantum me-
chanic formalism has a probability given by P = |Ψ |2. Due
to the oscillatory solution for the modes of Ψ(α, x), in our
case both expressions for the probability give, up to an
overall normalization constant,

((
b
π

)2
for lattices

)

P ≈
1

|ε̃s|
. (21)

This shows that P is peaked around Ψ1 with energy ε̃1 ≈(
π
bN

)2
. Although the SUSY landscape potential has λ =

0, our calculation shows that the most probable solu-
tion, (21), is peaked around the first bound state in the dis-
crete band of energy levels, i.e. the lowest lying energy level
s= 1. As shown this lowest lying level has a non-zero en-

ergy constant energy ε̃1 ≈
(
π
bN

)2
. The lifting of the degen-

eracy of the N vacua and thus the spontaneous breaking of
SUSY by the bound state Ψ1 due to tunneling gives birth to
a universe with a small cosmological constantΛ=H21 = ε1.
N is expected to be large enough. Thus having ε1 ≈ Λ in
the favored range of λ≈ 10−120M4p can be easily arranged.
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Assuming R-symmetry is not crucial or restrictive to our
result. Removing the R-symmetry consideration from the
SUSY sector of the landscape would extend this sector by
allowing the AdS type vacua with λ≤ 0. Hence including
the AdS vacua in the superspace does not change our re-
sults. The SUSY AdS solutions result in a term λ < 0 in (4)
which may render Fs(α), (20), to be a decaying solution for
all εs for which εs+λ < 0. These solutions have vanishing
probability and do not give birth to a universe; therefore
they are physically irrelevant. This shows that the most
probable solution still is the first bound state lifted above
zero. We have just shown that Ψ1 is a unique, stable and
most probable solution with non-zero energy propagating
in the SUSYminisuperspace of the landscape. It can there-
fore be a candidate for the wavefunction of the universe
from the landscape.

4 Concluding remarks

We have shown here how a unique, most probable and sta-
ble solution for the wavefunction of the universe can be
predicted from the landscape without having to appeal
to anthropic arguments. The solution found here sponta-
neously breaks SUSY, since it contains a small and non-
zero Λ =

(
π
lpN

)2
. Due to tunneling, the wavefunction can

spread throughout the landscape rather than be localized
around one vacuum site. As we showed, Ψs are extended
states. This result is a radical departure from the point of
view taken in the literature, where the question “Which
vacua do we live in?” implies a highly localized solution for
Ψs. Constructive interference between right and left mov-
ing plane waves for the large but finite landscape gives
rise to N −1 normal mode bound states that occupy the
SUSY minisuperspace of the landscape in a discrete band
of energy levels that have a non-zero mass gap from the
degenerate vacuum λ= 0. The non-zero mass gap for the
wavefunction of the universe is responsible for the spon-
taneous breaking of the SUSY of the landscape. Each of
the bound states has its own energy and can give rise to
a de Sitter universe with a different expansion rate accord-
ing to the energy level. The probability for the bound state
levels is inversely proportional to their energy; thus the
lowest lying energy state becomes the most probable one.
It is interesting to note that we get a different estimate for
the ground state energy dependence on N ; namely, we ob-
tained Λ�N−2 instead of the current estimate appearing
in the literature i.e. Λ�N−1. It should be noted that the
N →∞ limit recovers SUSY on the 3-geometry as it makes
the mass gap Λ for the energy level disappear.
Thus, according to our picture, the universe nucleates

directly from the quantum gravity era with a small cosmo-

logical constantΛ=
(
π
bN

)2
. We have assumed here that the

subsequent evolution of the universe is the conventional
one. We would need to extend our minisuperspace to in-
clude more degrees of freedom such as the matter content
for the 3-geometries, in order to account for a more re-
alistic universe and to be able to address issues such as

inflation, reheating, mass hierarchy and others. These im-
portant issues are not trivial within the proposed scenario
and deserve further investigation. We hope to report our
result on the extension of the landscape minisuperspace to
3-geometries that contain the standard model.
Finally, we would like to stress that our scenario is very

different from that of [19] (see also [20] for a different ap-
proach to the cosmological constant problem within the
theories with degenerate vacua). There, one assumed the
existence of a coherent superposition of landscape vacua,
similar to the theta-vacuum in Yang–Mills theory. How-
ever, theta-vacua in field theories appear only if there
are stable classical field configurations with finite action
(instantons) which provide for the inter-vacua tunnelings.
In contrast to [19], we are working in the context of quan-
tum cosmology on minisuperspace and our equation (17)
describes the quantum mechanical problem of a particle
propagating in a periodic potential. The solution to this
problem is by the well-knownBloch waves. Thus in our sce-
nario the role of the theta-vacuum is played by the Bloch
wave type solution (see (16)) for the wavefunction of the
universe. Eachmode in (16) describes a universe with a cer-
tain cosmological constant (and supposedly other physical
‘observables’) to which we can assign quantum mechanical
probabilities as is discussed above. This kind of dynamic
selection criterion, based on the probability calculation,
may be a more physical alternative to the statistical [8–
11] or anthropic selection criteria for the landscape vacua.
Obviously there is a transition from quantum to classi-
cal cosmology which involves decoherence.We assume that
once our universe (the one with the largest quantum me-
chanical probability) is born during the “quantum era”,
will decohere, and the subsequent evolution will be deter-
mined by the standard classical cosmology.

Acknowledgements. We are very grateful to Laurie McNeil and
Dmitri Khevchenko for many beneficial discussions about con-
densed matter analogs. We would also like to thank Andreas
Albrecht for stimulating and helpful comments.

References

1. R. Bousso, J. Polchinski, JHEP 0006, 006 (2000) [hep-th/
0004134]

2. S. Kachru, R. Kallosh, A. Linde, S.P. Trivedi, Phys. Rev. D
68, 046005 (2003) [hep-th/0301240]

3. L. Susskind, hep-th/0302219
4. L. Susskind, hep-th/0405189
5. B. Freivogel, L. Susskind, hep-th/0408133
6. T. Banks, M. Dine, E. Gorbatov, JHEP 0408, 058 (2004)
[hep-th/0309170]

7. M. Dine, E. Gorbatov, S. Thomas, hep-th/0407043
8. M.R. Douglas, JHEP 0305, 046 (2003) [hep-th/0303194]
9. F. Denef, M.R. Douglas, B. Florea, JHEP 0406, 034 (2004)
[hep-th/0404257]

10. M.R. Douglas, hep-th/0405279
11. M.R. Douglas, hep-th/0409207
12. J.B. Hartle, S.W. Hawking, Phys. Rev. D 28, 2960 (1983)
13. T. Vachaspati, A. Vilenkin, Phys. Rev. D 37, 898 (1988)



A. Koakhidze, L. Mersini-Houghton: Birth of the universe from the landscape of string theory 873

14. A. Vilenkin, Phys. Rev. D 50, 2581 (1994) [gr-qc/9403010]
and references therein

15. J.J. Halliwell, Phys. Rev. D 64, 044008 (2001) [gr-qc/
0008046]

16. J.J. Halliwell, Phys. Rev. D 63, 085013 (2001) [quant-ph/
0011103]

17. D.L. Wiltshire, gr-qc/0101003

18. M.J.W. Hall, K. Kumar, M. Reginatto, J. Phys. A 36, 9779
(2003) [hep-th/0307259]

19. G.L. Kane, M.J. Perry, A.N. Zytkow, hep-ph/0408169
20. J. Yokoyama, Phys. Rev. Lett. 88, 151302 (2002) [hep-th/
0110137]

21. C. Kittel, Introduction to Solid State Physics (John Wiley
and Sons Inc., 1968)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


